
Robbie the Running Robot:
A Distributed Learning System

Kynan Eng, Alec P Robertson and Deane R Blackman
Department of Mechanical Engineering

Monash University, Clayton
Victoria, Australia

Abstract

A unique distributed cont
developed to allow
walk. I t models competing directi
robot to walk as quick
over given minimal in
architecture features
arrangement of cooper
controller. This h
conventional control
scope for incremental
facilitate accurate
Accelerated learning
robot’s intrinsic knowledg
infer additional info
This was found to improve the rob
particularly at the s
information was limited. These concepts can be
applied to autonomous robots for use in deep sea
and other inhospitable environments.

Introduction

Conventional mechatronic systems tend to be highly
specific with the steps required to perform a task built-in
to the machine’s design. This makes the system efficient
at performing its intended function in optimal conditions,
but inefficient at dealing with unexpected situations. The
main reason that most mechatronic systems deal poorly
with unexpected events is that the predefined information
in the system is too specific. A better strategy in some
applications is to allow the system to independently
determine the best way to perform the task, given the
ability to interact with its environment and analyse the
success of its actions. Of course, providing such meta-
knowledge to a mechatronic system must have practical

0-8186-8025-3/97 $10.00 0 1997 IEEE

limits defined by the learning time required and the cost
of failed trials during the learning process.

This paper describes the development of a six-legged
robot that learns how to walk as quickly as possible with
minimal initial knowledge regarding appropriate walking
actions or terrain type. The main focus of the project was
on the learning processes involved rather than the details
of dynamic real-time robot control systems. Given the
means to control each of its legs, the robot was designed
to work out sequences of leg movements that allow it to
walk without falling over. To counteract the possibility
that the robot could avoid falling simply by standing still,
the incentive to learn how to walk was given by an in-
built “curiosity”. The competing directives affecting the
robot can be summarised as follows.

Directive Means to achieve directive
Walk
Avoid pain
Improve
Compete

Repeat a leg movement sequence forever
Don’t repeat “painful” leg movements
Try new random leg movement sequences
Repeat the last sequence of leg movements
a little faster

100

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 15,2010 at 23:47:21 UTC from IEEE Xplore. Restrictions apply.

System Architecture

Earlier studies in this field have been undertaken by
Brooks [1,2] with Genghis, a walking robot based on his
Subsumption Architecture. His work was heavily process
based, where each module in the architecture was
responsible for some action: raising legs, lower legs, etc.

The distributed leaming architecture developed for
Robbie (Figure 2) directly models the competing
directives which drive the robot's actions. It is layered in
a similar way to the IS0 networking reference model.
The lowest layer is the physical realisation of the robot
(sensors and actuators), while the higher layers deal with
progressively more abstract learning concepts. The
directives can be seen as the vertical alignment of
different blocks in the architecture.

SECONDARY DIRECTIVE- PRIUE DIRECTIVE SECONDARY DIRECTIVE:
COWETE WALK AVOID PUN

PhysIeaI

READ FOOT
SENSORS

I I
LEG CONFLCT

EVALUATE AVOID PAIN

LEG CONFLCT
RESOLUTION

EVAL(4)

I EVALUATE I I AVOID PAIN I

WS(14)-

WALK FAST
INNOVATENEW MODIFY TO

SEOUENCE AVO0 PAIN

Layer 2

R.1k~Ive

Layer 3
L..,"l"p

Each module is run as a separate independent process.
Asynchronous message queues provide for interaction
between modules. The architecture is organised so that
feedback paths progress directly up the layers. Feed
forward paths, on the other hand, are regulated by special

conflict resolution blocks. These blocks accept multiple
inputs from one or both adjacent layers and produce a
single feed-forward output, ie. the block makes a decision
about the most appropriate input or combination of inputs
to feed forward.

The interactions between the components are what
causes the system as a whole to "learn". By designing
some of the complexity of the system at the architectural
level, the individual components can be made much
simpler than might otherwise be possible in a leaming
system.

The distributed leaming architecture presented here
represents one way of dealing with the given learning
problem. When defined in this way, the distributed
leaming architecture is simply a high-level algorithm.
Thus the algorithms used for the individual components
are obviously affected by the overlying architecture.

Conceivably, if the learning architecture was
sufficiently refined with each component being defined as
a separate leaming architecture then eventually each
component would become trivial to implement. However,
this is not the case, as this would imply that at some stage
there was a trivial way of learning an arbitrary piece of
knowledge. In practice, the leaming architecture needs
to be just complex enough to learn the task at hand - at
least one of the components must contain some in-built
knowledge about the task. Extra complexity lends extra
adaptability, but it must be contained in order to maintain
practicality. This is the difference between learning in
the pure sense (learning with no predefined knowledge)
and learning in a practical application (some predefined
knowledge without compromising adaptability).

Analogues in Other Systems

Many recent developments in learning systems use
other (often natural) systems as a basis, for example the
human immune system [3]. While no existing system
was consciously used to develop Robbie's learning
architecture, two analogies suggested themselves when
the topology of the design had been finalised:

0 The structure can be seen as a simplified version of
the human nervous system, in which the physical
assets correspond to the nerve endings and the
message queues represent the transmission of
messages along the nerves.
The striking similarity of the system architecture to
the IS0 networking reference model reflects the
similarities between hiding complexity in learning
and remote data access.

101

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 15,2010 at 23:47:21 UTC from IEEE Xplore. Restrictions apply.

Learning Algorithms

Several novel algorithms were developed to enable the
robot to learn how to walk. They deal with two
potentially conflicting goals: avoiding falling over and
maximising walking speed. The algorithms were
designed with practical performance in mind rather than
learning in the pure sense, however prior knowledge of
the learning problem was kept to a minimum to ensure
adaptability over a wide variety of different terrains.

Avoiding Falling Over

A rule-based strategy was used to enable the robot to
learn how to avoid falling over. It trials different
combinations of leg movements and records the results of
these trials. In this way, after a certain number of trials it
has amassed sufficient knowledge of the terrain to move
its legs in ways that prevent it from falling over.

The speed of the learning process is improved by using
the symmetry of the robot to generate tentative rules.
Dubbed Symmetry Learning, this technique allows the
robot to access (up to) four times as much data as is
available directly from its sensors from a single trial.

The method by which the extra data is generated is
illustrated in Figure 3. When the robot receives data
about the result of a trial, it is stored with an “actual”
priority. The data is then mirrored about the horizontal
and vertical planes to generate three more rules with
priorities of “high”, “medium” and “low”. The lower
priorities indicate that a rule was generated by the use of
symmetry and should be considered as a tentative rule
only. Any new information received in a later trial that
conflicts with an existing rule is only stored if it is of an
equal or higher priority than the existing rule. Using this
technique, the robot Ieams (increases the number of ruIes
available) very quickly by infemng its own tentative rules
from the available data Even if the tentative rules are
incorrect, later trials will eventually weed out the invalid
rules.

Two different methods were used to modify the robot’s
actions in response to data gained from the stored rules.
The first of these involves randomly altering the sequence
of the leg movement times where the robot found leg
configurations that caused it to fall over. The second
method notes which leg actions most likely caused the
robot to fall over and ensures that the same actions are
not repeated on the next attempt. Neither of these
methods require the robot to learn what needs to be done;
it was deemed that from a practical viewpoint the
simplicity of these algorithms did not warrant extra
learning software.

Leg Pain
Config. Sensors

- . - i:,i
U

Mirror horizontal ~~

Key u/d = leg up/do\nxl; d c = belly s e n a openiclosed
~

Fig 3. Horizontal and vertical mirroring

Maximising Walking Speed

The approaches to maximising the robot’s walking
speed fall into two broad categories:

A simple proportional reduction scaling
transformation which instructs the robot to do what it
did before, but a little bit faster.
Non-linear transformations which seek to normalise
and eliminate redundant periods (times when none of
the robot’s legs are moving).

The non-linear transformations are useful for rapid
performance improvements, while the proportional
scaling is used for fine-tuning performance when the
robot is already walking near its maximum potential
speed.

Note that although these approaches were found to
work well, neither of them involve the robot actually
learning the appropriate actions to take. The knowledge
of what to do in order to walk faster is predefined in the
algorithms used.

Another strategy has been proposed but not yet
implemented where the robot creates lists of rule “cells”
for each leg which contain statistics about the robot’s
performance over the previous time period. New and
improved walking sequences are generated by combining
the rule cells of most merit for each leg.

102

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 15,2010 at 23:47:21 UTC from IEEE Xplore. Restrictions apply.

Simulation Software

A simulation of the robot was developed to test each
learning algorithm as it was implemented. The
simulation display contains a representation of the system
architecture and allows easy tracing of data and process
states. It deals exclusively with the learning components
of the system; the control of the robot was dealt with
separately.

Robot Controller Architecture

The main aim in the design of the robot controller was
to keep the cost and development time required to an
absolute minimum. An architectural diagram is shown in
Figure 4.

bobot Controller Architecture

Data cable'
(25 Ines)

Robot interlace board

Fig 4. Robot controller architecture

Both the host computer and robot controller computers
are standard PCs running MS-DOS. The host PC uses a
single RS-232 serial port connected to a controller PC
which interfaces to the robot via two standard 8-bit
parallel ports.

The interface protocol between the host and controller
computers is a simple fixed packet length serial protocol.
No error checking or packet retransmission facilities were
implemented due to time constraints.

Robot Controller Software

The software for controlling the robot performs the
following tasks in real time:

Pulse Width Modulation (PWM) position-based
control of twelve servo motors

0 Continuous polling of six foot sensor switches and
four belly sensor switches

0 Interrupt-driven RS-232 serial communications with
the learning software computer
Logging of system operations to disk
Calculation of performance statistics
Display of current status on the computer screen
Processing of user keyboard commands

The core of the controller is a timer interrupt routine
which times the pulses for controlling the servo motors.
The pulse width is between about 1 and 2 ms for each
servo motor, with a new pulse being required for each
servo motor every 25-30 ms. After each motor has been
pulsed once, the sensors are polled and their status
updated. This gives a polling rate of about 40 Hz, which
is more than adequate for this application.

At the same time as this, the interrupt-driven serial
communications library receives and sends packets when
instructed to by the learning software computer. Both the
communications queue and the keyboard are polled
periodically and actions taken depending on any new
inputs received.

Although the learning software deals only with
walking forwards, the controller software also provides
for backwards walking and turning left and right.

Robot Construction

The physical robot is about 300 mm long and has a
total mass of about 1 kg. It is constructed mainly of CNC
milled 3 mm acrylic. There are three major structural
components:

0 The chassis is a rectangular sheet of acrylic which
provides a platform for the servo motors and interface
PCB. Large sections are cut out of the rectangular
sheet to minimise weight. A narrow acrylic spine
fixed with double-sided adhesive tape runs the length
of the robot to provide additional stiffness.
Servo mounts provide a connection between the fore-
aft and raise-lower servos on each leg.

0 The legs are single pieces of 3 mm thick acrylic
directly mounted to the leg drive servo-motor.

Standard RC servo motors are used to actuate each of
the two-degree-of-freedom legs. Each of the six legs has
a microswitch mounted in the foot. Microswitches
mounted on the torso enable the robot to sense when it
has fallen down.

103

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 15,2010 at 23:47:21 UTC from IEEE Xplore. Restrictions apply.

Testing Performed

The robot was tested in offline mode, using the
simulation as well as online with the real robot. The
simulated mode tests revealed how the algorithms and the
robot (simulation) performed under deterministic
conditions, while the field tests showed how the
algorithms and the physical robot performed in reality.

Real robot testing was conducted on the following
types of terrain:

Flat ground (carpet)
Inclined wooden plane (6 degrees and 14 degrees),
uphill and downhill (see Figure 5)
Corrugated plastic roofing with a peak-to-peak height
of about 20 mm and a wavelength of about 75 mm

Fig 5. Robbie climbing an inclined plane

The following data was collected for each of three
separate test runs for each algorithm and the results
averaged:

The position (and hence the velocity) of the robot at
regular time intervals
The number of times the robot fell down during the
run and at what times the falls occurred

The robot was also run in tripod gait on each type of
terrain, yielding the maximum possible speed of the robot
as a reference value.

Results and Analysis: The R-Rating

To provide a consistent way of comparing the
performance of different algorithms on different terrains,
an index called the R-rating was developed. Its
formulation is as follows:

R, = i o o L . 5 i = I..N
n tall$

where: n falls Inpod - number of falls per metre for tripod gait
v , , ~ ” ~ ~ - average velocity over course for tnpod gait

5 - scamg factor
nfails - number of falls per metre
v,, - average velocity over course
N - number of tests performed
R, - performance index (R - rating) of test i

The results are normalised to the results obtained from
manually running the robot in the tripod gait on flat
ground, which is assigned an R-rating of 100, assuming
one fall per metre (the robot must fall to learn). The
robot walking in tripod gait on flat ground managed a
sustained speed of 8.2 c d s .

It was found that the pain avoidance leaming
algorithms aided by symmetry and the nonlinear
performance improvement transformations gave the best
performance on all terrain types. The leamed gaits gave
a maximum speed of about 2 c d s (R-Rating = 13) for
flat and corrugated terrain, and about 1 cm/s (R-Rating =
2) on the 6 degree uphill incline. The 14 degree incline
proved too steep to climb at all. On flat ground, the best
non-learning algorithm registered an R-Rating of 4
indicating that there is a three-fold performance
difference using the leaming algorithms. The robot was
able to attain maximum speed when walking without
falling over in less than 60 seconds.

Comparison With Other Robots

Robbie’s performance is most readily compared with
the Genghis robot developed by Rodney Brooks at MIT.
Both use pain feedback information and are designed to
walk as quickly as possible. Genghis is fully autonomous
and has some extra features such as variable leg lifting
and force balancing to allow it to walk over uneven
terrain more easily. Both take around 2 minutes to reach
a maximum speed of between 2 and 3 cmls. However,
because Robbie was constructed very rapidly and with
limited financial resources, its performance was
certainly well below its full potential. It was also lacking
in the navigational and force balancing features.
Overcoming these limitations should be a relatively
straightforward development process and should result in
a significant increase in performance.

104

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 15,2010 at 23:47:21 UTC from IEEE Xplore. Restrictions apply.

Applications

There are obvious applications for the architecture and
algorithms developed for Robbie to autonomous walking
robots in inhospitable environments andlor in situations
where the terrain is unknown. The learning components
can be readily extended to include extra sensors, path
planning and navigational control. The economic and
rapid construction of Robbie (total cost about AUD400)
also opens up possible commercial applications in
education and entertainment.

Limitations, Conclusions and Further Work

The distributed learning control system and the design
process used were found to have many advantages during
the course of Robbie’s construction, including:

The problem was able to be decomposed easily into
small, manageable pieces.
The architectural layout was suggested naturally by
the competing directives in the problem definition.
The horizontally layered structure bound by vertical
directives imposed a degree of order on the design
without imposing excessive restrictions.
A simulation was created which reflected the
performance of the robot remarkably well long before
the real robot was built, enabling off-line simulation
and testing of algorithms.
Each module could be implemented relatively
independently of the others, and improved
incrementally where deemed necessary.
The overall system proved to be quite robust; the robot
walked successfully even when major bugs were
present in some of the modules.

Several novel algorithms were also developed which
addressed the specific problems associated with robot
walking. The first was Symmetry Learning, which uses
the robot’s own symmetry to speed up the creation of

rules to walk without falling over. Several non-learning
algorithms were also developed to provide rapid walking
speed improvements by removing redundant and wasted
time from a given robot walking sequence without
compromising stability.

The main limitation of the distributed learning
architecture is that it is specific to the problem of learning
how to walk. It may be possible to define a more general
distributed learning architecture (perhaps using a
different architectural topology) that is applicable to a
wider set of problems in the same way that neural
networks are. Further research can be directed towards
development of additional levels of abstraction to broaden
the scope of application of the architecture and
algorithms.

Acknowledgment

Thanks go to Associate Professor Deane R Blackman
and Dr Bijan Shirinzadeh, both of Monash University, for
their valuable guidance in the course of the design and
construction of Robbie the Running Robot. Other people
who have provided assistance include Keith Hoy, Peter
Koch (equipment and supplies for construction) and
Andre Spierings (photography of Robbie).

References

1. R A Brooks: A Robust Layered Control System for a
Mobile Robot, Proc Robotics Research: Third
International Symposium, Gouvieux, 1985, pub. IEEE,

2. R A Brooks: A Robot that Walks; Emergent
Behaviours from a Carefully Evolved Network, Proc
International Conference on Robotics and Automation,
Arizona, pub. IEEE, 1989, pp 692-694.
3. A Ishiguro, S Ichikawa, Y Uchikawa: A Gait
Acquisition of a 6-Legged Robot Using Immune
Networks, Proc International Conference on Intelligent
Robots and Systems, Location unknown, 1992, pub.

pp 365-372.

IEEE, pp 1034-1041.

105

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 15,2010 at 23:47:21 UTC from IEEE Xplore. Restrictions apply.

